toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Levin, N.; Phinn, S. url  doi
openurl 
  Title Illuminating the capabilities of Landsat 8 for mapping night lights Type Journal Article
  Year 2016 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment  
  Volume 182 Issue Pages 27-38  
  Keywords Remote Sensing; Instrumentation  
  Abstract Remote sensing of night-lights has been enhanced in recent years with the availability of the new VIIRS Day and Night band, the commercial EROS-B satellite and astronaut photographs from the International Space Station. However, dedicated space-borne multispectral sensors offering radiance calibrated night lights imagery are yet to be launched. Here we examined the capabilities of Landsat 8 to acquire night time light images of the Earth. Examining seven night-time Landsat 8 scenes, we found that brightly lit areas in both urban (Berlin, Las Vegas, Nagoya and Tel-Aviv) and gas flares (Basra, Kuwait) areas were detected in all eight bands of Landsat 8. The threshold for detection of lit areas was approximately 0.4 W/m2/μm/sr in bands 1–5 and 8 of Landsat 8. This threshold level was higher than Landsat dark noise levels, and slightly lower than post launch Landsat 8 OLI band dependent noise equivalent radiance difference levels. Drawing on this, we call on the USGS to plan an annual night-time acquisition of urban and gas flares areas globally, and to enable the performance of the future Landsat 10 to be established in a way that it will be sensitive enough to image the Earth at night, thus performing as Nightsat during the night.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-4257 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1452  
Permanent link to this record
 

 
Author Scheffler, T.; Kyba, C.C.M. url  openurl
  Title Measuring Social Jetlag in Twitter Data Type Conference Article
  Year 2016 Publication Proceedings of the Tenth International AAAI Conference on Web and Social Media (ICWSM 2016) Abbreviated Journal  
  Volume Issue Pages 675-678  
  Keywords Human Health; Sunlight; Society  
  Abstract Social constraints have replaced the natural cycle of light and darkness as the main determinant of wake-up and activity times for many people. In this paper we show how Twitter activity can be used as a source of large-scale, naturally occurring data for the study of circadian rhythm in humans. Our year-long initial study is based on almost 1.5 million observations by over 200,000 users. The progression of the onset of Twitter activity times on free days in the course of the year is consistent with previous survey-based research on wake

times. We show that the difference in wake-up time (implicating lack of sleep) on weekdays compared to Sundays is between 1 hour and over 2 hours depending on the time of year. The data also supports the assertion that Daylight Saving Time greatly disrupts the easing of social jetlag in the Spring transition.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICWSM 2016  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1453  
Permanent link to this record
 

 
Author Kyba, C.C.M. url  doi
openurl 
  Title Defense Meteorological Satellite Program data should no longer be used for epidemiological studies Type Journal Article
  Year 2016 Publication Chronobiology International Abbreviated Journal Chronobiology International  
  Volume 33 Issue 8 Pages 943-945  
  Keywords Commentary; Human Health; Remote Sensing  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0742-0528 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1459  
Permanent link to this record
 

 
Author Reinberg, A.; Smolensky, M.H.; Touitou, Y. url  doi
openurl 
  Title The full moon as a synchronizer of circa-monthly biological rhythms: Chronobiologic perspectives based on multidisciplinary naturalistic research Type Journal Article
  Year 2016 Publication Chronobiology International Abbreviated Journal Chronobiol Int  
  Volume 33 Issue 5 Pages 465-479  
  Keywords Moonlight; Commentary; Animals; Plants; Human Health  
  Abstract Biological rhythmicity is presumed to be an advantageous genetic adaptation of fitness and survival value resulting from evolution of life forms in an environment that varies predictably-in-time during the 24 h, month, and year. The 24 h light/dark cycle is the prime synchronizer of circadian periodicities, and its modulation over the course of the year, in terms of daytime photoperiod length, is a prime synchronizer of circannual periodicities. Circadian and circannual rhythms have been the major research focus of most scientists. Circa-monthly rhythms triggered or synchronized by the 29.5 day lunar cycle of nighttime light intensity, or specifically the light of the full moon, although explored in waterborne and certain other species, have received far less study, perhaps because of associations with ancient mythology and/or an attitude naturalistic studies are of lesser merit than ones that entail molecular mechanisms. In this editorial, we cite our recent discovery through multidisciplinary naturalistic investigation of a highly integrated circadian, circa-monthly, and circannual time structure, synchronized by the natural ambient nyctohemeral, lunar, and annual light cycles, of the Peruvian apple cactus (C. peruvianus) flowering and reproductive processes that occur in close temporal coordination with like rhythms of the honey bee as its pollinator. This finding led us to explore the preservation of this integrated biological time structure, synchronized and/or triggered by environmental light cues and cycles, in the reproduction of other species, including Homo sapiens, and how the artificial light environment of today in which humans reside may be negatively affecting human reproduction efficiency.  
  Address a Unite de Chronobiologie , Fondation A de Rothschild , Paris cedex 19 , France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0742-0528 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27019304 Approved no  
  Call Number LoNNe @ kyba @ Serial 1460  
Permanent link to this record
 

 
Author Aulsebrook, A.E.; Jones, T.M.; Rattenborg, N.C.; Roth, T.C. 2nd; Lesku, J.A. url  doi
openurl 
  Title Sleep Ecophysiology: Integrating Neuroscience and Ecology Type Journal Article
  Year 2016 Publication Trends in Ecology & Evolution Abbreviated Journal Trends Ecol Evol  
  Volume 31 Issue 8 Pages 590-599  
  Keywords Commentary; Physiology  
  Abstract Here, we propose an original approach to explain one of the great unresolved questions in animal biology: what is the function of sleep? Existing ecological and neurological approaches to this question have become roadblocks to an answer. Ecologists typically treat sleep as a simple behavior, instead of a heterogeneous neurophysiological state, while neuroscientists generally fail to appreciate the critical insights offered by the consideration of ecology and evolutionary history. Redressing these shortfalls requires cross-disciplinary integration. By bringing together aspects of behavioral ecology, evolution, and conservation with neurophysiology, we can achieve a more comprehensive understanding of sleep, including its implications for adaptive waking behavior and fitness.  
  Address La Trobe University, School of Life Sciences, Melbourne, VIC, Australia. Electronic address: j.lesku@latrobe.edu.au  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-5347 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27262386 Approved no  
  Call Number LoNNe @ kyba @ Serial 1462  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: