toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Papagiannakopoulos, T.; Bauer, M.R.; Davidson, S.M.; Heimann, M.; Subbaraj, L.; Bhutkar, A.; Bartlebaugh, J.; Vander Heiden, M.G.; Jacks, T. url  doi
openurl 
  Title (up) Circadian Rhythm Disruption Promotes Lung Tumorigenesis Type Journal Article
  Year 2016 Publication Cell Metabolism Abbreviated Journal Cell Metab  
  Volume 24 Issue 2 Pages 324–331  
  Keywords Animals  
  Abstract Circadian rhythms are 24-hr oscillations that control a variety of biological processes in living systems, including two hallmarks of cancer, cell division and metabolism. Circadian rhythm disruption by shift work is associated with greater risk for cancer development and poor prognosis, suggesting a putative tumor-suppressive role for circadian rhythm homeostasis. Using a genetically engineered mouse model of lung adenocarcinoma, we have characterized the effects of circadian rhythm disruption on lung tumorigenesis. We demonstrate that both physiologic perturbation (jet lag) and genetic mutation of the central circadian clock components decreased survival and promoted lung tumor growth and progression. The core circadian genes Per2 and Bmal1 were shown to have cell-autonomous tumor-suppressive roles in transformation and lung tumor progression. Loss of the central clock components led to increased c-Myc expression, enhanced proliferation, and metabolic dysregulation. Our findings demonstrate that both systemic and somatic disruption of circadian rhythms contribute to cancer progression.  
  Address David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Electronic address: tjacks@mit.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-4131 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27476975 Approved no  
  Call Number LoNNe @ kyba @ Serial 1497  
Permanent link to this record
 

 
Author Colwell, C.S. url  doi
openurl 
  Title (up) Circadian Rhythms: Does Burning the Midnight Oil Leave You Weak? Type Journal Article
  Year 2016 Publication Current Biology : CB Abbreviated Journal Curr Biol  
  Volume 26 Issue 14 Pages R669-71  
  Keywords Commentary  
  Abstract A new study shows that nocturnal light exposure rapidly disrupts the central circadian clock as well as reduces motor performance and bone health. These findings provide a striking example of the costs of living in a disrupted light/dark cycle.  
  Address Department of Psychiatry and Biobehavioral Sciences, Semel Institute, University of California, Los Angeles, CA 90095, USA. Electronic address: CColwell@mednet.ucla.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-9822 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27458911 Approved no  
  Call Number LoNNe @ kyba @ Serial 1494  
Permanent link to this record
 

 
Author Qian, J.; Scheer, F.A.J.L. url  doi
openurl 
  Title (up) Circadian System and Glucose Metabolism: Implications for Physiology and Disease Type Journal Article
  Year 2016 Publication Trends in Endocrinology and Metabolism: TEM Abbreviated Journal Trends Endocrinol Metab  
  Volume 27 Issue 5 Pages 282-293  
  Keywords Human Health; circadian rhythms; food timing; glucose metabolism; melatonin; sleep; type 2 diabetes  
  Abstract The circadian system serves one of the most fundamental properties present in nearly all organisms: it generates 24-h rhythms in behavioral and physiological processes and enables anticipating and adapting to daily environmental changes. Recent studies indicate that the circadian system is important in regulating the daily rhythm in glucose metabolism. Disturbance of this circadian control or of its coordination relative to the environmental/behavioral cycle, such as in shift work, eating late, or due to genetic changes, results in disturbed glucose control and increased type 2 diabetes risk. Therefore, an in-depth understanding of the mechanisms underlying glucose regulation by the circadian system and its disturbance may help in the development of therapeutic interventions against the deleterious health consequences of circadian disruption.  
  Address Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA; fscheer(at)bwh.harvard.edu  
  Corporate Author Thesis  
  Publisher Cell Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1043-2760 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27079518; PMCID:PMC4842150 Approved no  
  Call Number IDA @ john @ Serial 1446  
Permanent link to this record
 

 
Author Bolton, D.; Mayer-Pinto, M.; Clark, G.F.; Dafforn, K.A.; Brassil, W.A.; Becker, A.; Johnston, E.L. url  doi
openurl 
  Title (up) Coastal urban lighting has ecological consequences for multiple trophic levels under the sea Type Journal Article
  Year 2016 Publication The Science of the Total Environment Abbreviated Journal Sci Total Environ  
  Volume 576 Issue Pages 1-9  
  Keywords Animals; Ecology  
  Abstract Urban land and seascapes are increasingly exposed to artificial lighting at night (ALAN), which is a significant source of light pollution. A broad range of ecological effects are associated with ALAN, but the changes to ecological processes remain largely unstudied. Predation is a key ecological process that structures assemblages and responds to natural cycles of light and dark. We investigated the effect of ALAN on fish predatory behaviour, and sessile invertebrate prey assemblages. Over 21days fish and sessile assemblages were exposed to 3 light treatments (Day, Night and ALAN). An array of LED spotlights was installed under a wharf to create the ALAN treatments. We used GoPro cameras to film during the day and ALAN treatments, and a Dual frequency IDentification SONar (DIDSON) to film during the night treatments. Fish were most abundant during unlit nights, but were also relatively sedentary. Predatory behaviour was greatest during the day and under ALAN than at night, suggesting that fish are using structures for non-feeding purposes (e.g. shelter) at night, but artificial light dramatically increases their predatory behaviour. Altered predator behaviour corresponded with structural changes to sessile prey assemblages among the experimental lighting treatments. We demonstrate the direct effects of artificial lighting on fish behaviour and the concomitant indirect effects on sessile assemblage structure. Current and future projected use of artificial lights has the potential to significantly affect predator-prey interactions in marine systems by altering habitat use for both predators and prey. However, developments in lighting technology are a promising avenue for mitigation. This is among the first empirical evidence from the marine system on how ALAN can directly alter predation, a fundamental ecosystem process, and have indirect trophic consequences.  
  Address Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia; Sydney Institute of Marine Sciences, Mosman, NSW 2088, Australia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27780095 Approved no  
  Call Number LoNNe @ kyba @ Serial 1548  
Permanent link to this record
 

 
Author Jean, N.; Burke, M.; Xie, M.; Davis, W.M.; Lobell, D.B.; Ermon, S. url  doi
openurl 
  Title (up) Combining satellite imagery and machine learning to predict poverty Type Journal Article
  Year 2016 Publication Science Abbreviated Journal Science  
  Volume 353 Issue 6301 Pages 790-794  
  Keywords Remote Sensing  
  Abstract Nighttime lighting is a rough proxy for economic wealth, and nighttime maps of the world show that many developing countries are sparsely illuminated. Jean et al. combined nighttime maps with high-resolution daytime satellite images (see the Perspective by Blumenstock). With a bit of machine-learning wizardry, the combined images can be converted into accurate estimates of household consumption and assets, both of which are hard to measure in poorer countries. Furthermore, the night- and day-time data are publicly available and nonproprietary.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8075 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1507  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: