|   | 
Details
   web
Records
Author Firebaugh, A.; Haynes, K.J.
Title Experimental tests of light-pollution impacts on nocturnal insect courtship and dispersal Type Journal Article
Year 2016 Publication Oecologia Abbreviated Journal Oecologia
Volume Issue Pages
Keywords Animals; Ecology
Abstract Though a number of effects of artificial light pollution on behavior and physiology have been described, there is little understanding of their consequences for the growth and distribution of populations. Here, we document impacts of light pollution on aspects of firefly population ecology and underlying mating behaviors. Many firefly species have a unique communication system whereby bioluminescent flashes are used in courtship displays to find and attract mates. We performed a series of manipulative field experiments in which we quantified the effects of adding artificial nighttime lighting on abundances and total flashing activity of fireflies, courtship behaviors and mating between tethered females and free-flying males, and dispersal distances of marked individuals. We show that light pollution reduces flashing activities in a dark-active firefly species (Photuris versicolor) by 69.69 % and courtship behavior and mating success in a twilight-active species (Photinus pyralis). Though courtship behavior and mating success of Photinus pyralis was reduced by light pollution, we found no effects of light pollution on male dispersal in this species. Our findings suggest that light pollution is likely to adversely impact firefly populations, and contribute to wider discussions about the ecological consequences of sensory pollution.
Address Blandy Experimental Farm, University of Virginia, 400 Blandy Farm Lane, Boyce, VA, 22620, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0029-8549 ISBN Medium
Area Expedition Conference
Notes PMID:27646716 Approved no
Call Number LoNNe @ kyba @ Serial 1526
Permanent link to this record
 

 
Author Bonmati-Carrion, M.A.; Hild, K.; Isherwood, C.; Sweeney, S.J.; Revell, V.L.; Skene, D.J.; Rol, M.A.; Madrid, J.A.
Title Relationship between Human Pupillary Light Reflex and Circadian System Status Type Journal Article
Year 2016 Publication PloS one Abbreviated Journal PLoS One
Volume 11 Issue 9 Pages e0162476
Keywords Human Health
Abstract Intrinsically photosensitive retinal ganglion cells (ipRGCs), whose photopigment melanopsin has a peak of sensitivity in the short wavelength range of the spectrum, constitute a common light input pathway to the olivary pretectal nucleus (OPN), the pupillary light reflex (PLR) regulatory centre, and to the suprachiasmatic nuclei (SCN), the major pacemaker of the circadian system. Thus, evaluating PLR under short wavelength light (lambdamax </= 500 nm) and creating an integrated PLR parameter, as a possible tool to indirectly assess the status of the circadian system, becomes of interest. Nine monochromatic, photon-matched light stimuli (300 s), in 10 nm increments from lambdamax 420 to 500 nm were administered to 15 healthy young participants (8 females), analyzing: i) the PLR; ii) wrist temperature (WT) and motor activity rhythms (WA), iii) light exposure (L) pattern and iv) diurnal preference (Horne-Ostberg), sleep quality (Pittsburgh) and daytime sleepiness (Epworth). Linear correlations between the different PLR parameters and circadian status index obtained from WT, WA and L recordings and scores from questionnaires were calculated. In summary, we found markers of robust circadian rhythms, namely high stability, reduced fragmentation, high amplitude, phase advance and low internal desynchronization, were correlated with a reduced PLR to 460-490 nm wavelengths. Integrated circadian (CSI) and PLR (cp-PLR) parameters are proposed, that also showed an inverse correlation. These results demonstrate, for the first time, the existence of a close relationship between the circadian system robustness and the pupillary reflex response, two non-visual functions primarily under melanopsin-ipRGC input.
Address Chronobiology Laboratory, Department of Physiology, Faculty of Biology, University of Murcia, IMIB-Arrixaca, 30100, Espinardo, Murcia, Spain
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes PMID:27636197; PMCID:PMC5026360 Approved no
Call Number LoNNe @ kyba @ Serial 1537
Permanent link to this record
 

 
Author Stone, R.A.; Cohen, Y.; McGlinn, A.M.; Davison, S.; Casavant, S.; Shaffer, J.; Khurana, T.S.; Pardue, M.T.; Iuvone, P.M.
Title Development of Experimental Myopia in Chicks in a Natural Environment Type Journal Article
Year 2016 Publication Investigative Ophthalmology & Visual Science Abbreviated Journal Invest Ophthalmol Vis Sci
Volume 57 Issue 11 Pages 4779-4789
Keywords Animals; Vision
Abstract PURPOSE: The hypothesis that outdoor exposure might protect against myopia has generated much interest, although available data find only modest clinical efficacy. We tested the effect of outdoor rearing on form-deprivation myopia in chicks, a myopia model markedly inhibited by high-intensity indoor laboratory lighting. METHODS: Unilaterally goggled cohorts of White Leghorn chicks were maintained in a species-appropriate, outdoor rural setting during daylight hours to the extent permitted by weather. Control chicks were reared indoors with incandescent lighting. Besides ocular refraction and ultrasound, we determined dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) content in retina and vitreous and measured mRNA expression levels of selected clock and circadian rhythm-related genes in the retina/RPE. RESULTS: Myopia developed in the goggled eyes of all cohorts. Whereas outdoor rearing lessened myopia by 44% at 4 days, a protective effect was no longer evident at 11 days. Outdoor rearing had no consistent effect on retinal or vitreous content of dopamine or DOPAC. Conforming to prior data on form-deprivation myopia, retina and vitreous levels of DOPAC were reduced in goggled eyes. Compared with contralateral eyes, the retinal expression of clock and circadian rhythm-related genes was modestly altered in myopic eyes of chicks reared indoors or outdoors. CONCLUSIONS: Outdoor rearing of chicks induces only a partial decrease of goggle-induced myopia that is not maintained, without evidence that retinal dopamine metabolism accounts for the partial myopia inhibition under these outdoor conditions. Although modest, alterations in retinal gene expression suggest that studying circadian signals might be informative for understanding refractive mechanisms.
Address Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, United States 7Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, United States
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0146-0404 ISBN Medium
Area Expedition Conference
Notes PMID:27618415; PMCID:PMC5024671 Approved no
Call Number LoNNe @ kyba @ Serial 1538
Permanent link to this record
 

 
Author Delhey, K.; Peters, A.
Title Implications for conservation of anthropogenic impacts on visual communication and camouflage Type Journal Article
Year 2016 Publication Conservation Biology : the Journal of the Society for Conservation Biology Abbreviated Journal Conserv Biol
Volume 31 Issue 1 Pages 30-39
Keywords Conservation
Abstract Anthropogenic environmental impacts can disrupt the sensory environment of animals and affect important processes from mate choice to predator avoidance. Currently these effects are best understood for auditory and chemo-sensory modalities and recent reviews highlight their importance for conservation. Here we summarise how anthropogenic changes to the visual environment (ambient light, transmission, backgrounds) affect visual communication and camouflage, and highlight implications for conservation. These implications are particularly evident for disrupted camouflage due to its tight links with survival while the conservation importance of impaired visual communication is less well-documented. Such effects can be potentially severe when they affect critical processes such as pollination or species recognition. However, when impaired mate choice does not lead to hybridization, the conservation consequences are less clear. We suggest that the demographic effects of human impacts on visual communication and camouflage will be particularly strong when: (a) human-induced modifications to the visual environment are evolutionary novel, that is, very different from natural variation, (b) affected species and populations have low levels of intraspecific (genotypic and phenotypic) variation and low levels of behavioural, sensory or physiological plasticity and (c) the processes affected are directly related to survival (camouflage), species recognition, or number of offspring produced, rather than offspring quality or attractiveness. The evidence summarized here suggests that anthropogenic effects on the visual environment might be of similar conservation concerns as those on other sensory modalities. This article is protected by copyright. All rights reserved.
Address 25 Rainforest Walk, School of Biological Sciences, Monash University, 3800, Clayton, Victoria, Australia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0888-8892 ISBN Medium
Area Expedition Conference
Notes PMID:27604521 Approved no
Call Number LoNNe @ kyba @ Serial 1525
Permanent link to this record
 

 
Author Coleman, G.; Gigg, J.; Canal, M.M.
Title Postnatal light alters hypothalamic-pituitary-adrenal (HPA) axis function and induces a depressive-like phenotype in adult mice Type Journal Article
Year 2016 Publication The European Journal of Neuroscience Abbreviated Journal Eur J Neurosci
Volume 44 Issue 10 Pages 2807-2817
Keywords Animals
Abstract The postnatal light environment that a mouse experiences during the critical first 3 postnatal weeks has long-term effects on both its circadian rhythm output and clock gene expression. Furthermore, data from our lab suggest that postnatal light may also impact the hypothalamic-pituitary-adrenal (HPA) axis, which is a key regulator of stress. To test the effect of postnatal light exposure on adult stress responses and circadian rhythmicity, we raised mice under either 24-h light-dark cycles (LD), constant light (LL) or constant dark (DD) during the first 3 postnatal weeks. After weaning we then exposed all animals to LD cycles (basal conditions), followed by LL (stressed conditions) environments. We examined brain neuropeptide and glucocorticoid receptor (GR) expression, plasma corticosterone concentration rhythm and body temperature rhythm, together with depression- and anxiety-related behaviour. Results showed that LL- and DD-raised mice exhibited decreased GR expression in the hippocampus, increased plasma corticosterone concentration at the onset of the dark phase and a depressive phenotype when exposed to LD cycles later in life. Furthermore, LL-raised mice showed increased corticotrophin-releasing hormone mRNA expression in the paraventricular nucleus of the hypothalamus. When exposed to LL as adults, LL-raised mice showed a significant circadian rhythm of plasma corticosterone concentration, together with a shorter period and stronger circadian rhythm of body temperature compared to DD-raised mice. Taken together, these data suggest that altered postnatal light environments have long-term effects on the HPA axis and the circadian system, which can lead to altered stress responses and a depressive phenotype in adulthood. This article is protected by copyright. All rights reserved.
Address Faculty of Life Sciences, University of Manchester, AV Hill Building, Oxford Road, M13 9PT, Manchester, UK. maria.canal@manchester.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-816X ISBN Medium
Area Expedition Conference
Notes PMID:27591429 Approved no
Call Number LoNNe @ kyba @ Serial 1523
Permanent link to this record