toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Xu, M.; He, C.; Liu, Z.; Dou, Y. url  doi
openurl 
  Title How Did Urban Land Expand in China between 1992 and 2015? A Multi-Scale Landscape Analysis Type Journal Article
  Year 2016 Publication PloS one Abbreviated Journal PLoS One  
  Volume 11 Issue 5 Pages e0154839  
  Keywords remote sensing  
  Abstract Effective and timely quantification of the spatiotemporal pattern of urban expansion in China is important for the assessment of its environmental effects. However, the dynamics of the most recent urban expansions in China since 2012 have not yet been adequately explained due to a lack of current information. In this paper, our objective was to quantify spatiotemporal patterns of urban expansion in China between 1992 and 2015. First, we extracted information on urban expansion in China between 1992 and 2015 by integrating nighttime light data, vegetation index data, and land surface temperature data. Then we analyzed the spatiotemporal patterns of urban expansion at the national and regional scales, as well as at that of urban agglomerations. We found that China experienced a rapid and large-scale process of urban expansion between 1992 and 2015, with urban land increasing from 1.22 x 104 km2 to 7.29 x 104 km2, increasing in size nearly fivefold and with an average annual growth rate of 8.10%, almost 2.5 times as rapid as the global average. We also found that urban land in China expanded mainly by occupying 3.31 x 104 km2 of cropland, which comprised 54.67% of the total area of expanded urban land. Among the three modes of growth-infilling, edge expansion, and leapfrog-edge expansion was the main cause of cropland loss. Cropland loss resulting from edge expansion of urban land totalled 2.51 x 104 km2, accounting for over 75% of total cropland loss. We suggest that effective future management with respect to edge expansion of urban land is needed to protect cropland in China.  
  Address Academy of Disaster Reduction and Emergency Management, Beijing Normal University, Beijing, China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27144589; PMCID:PMC4856333 Approved no  
  Call Number LoNNe @ kyba @ Serial 1438  
Permanent link to this record
 

 
Author Yuan, D.; Collage, R.D.; Huang, H.; Zhang, X.; Kautza, B.C.; Lewis, A.J.; Zuckerbraun, B.S.; Tsung, A.; Angus, D.C.; Rosengart, M.R. url  doi
openurl 
  Title Blue light reduces organ injury from ischemia and reperfusion Type Journal Article
  Year 2016 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc Natl Acad Sci U S A  
  Volume 113 Issue 19 Pages 5239-5244  
  Keywords Biology  
  Abstract Evidence suggests that light and circadian rhythms profoundly influence the physiologic capacity with which an organism responds to stress. However, the ramifications of light spectrum on the course of critical illness remain to be determined. Here, we show that acute exposure to bright blue spectrum light reduces organ injury by comparison with bright red spectrum or ambient white fluorescent light in two murine models of sterile insult: warm liver ischemia/reperfusion (I/R) and unilateral renal I/R. Exposure to bright blue light before I/R reduced hepatocellular injury and necrosis and reduced acute kidney injury and necrosis. In both models, blue light reduced neutrophil influx, as evidenced by reduced myeloperoxidase (MPO) within each organ, and reduced the release of high-mobility group box 1 (HMGB1), a neutrophil chemotactant and key mediator in the pathogenesis of I/R injury. The protective mechanism appeared to involve an optic pathway and was mediated, in part, by a sympathetic (beta3 adrenergic) pathway that functioned independent of significant alterations in melatonin or corticosterone concentrations to regulate neutrophil recruitment. These data suggest that modifying the spectrum of light may offer therapeutic utility in sterile forms of cellular injury.  
  Address Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15261 rosengartmr@upmc.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27114521 Approved no  
  Call Number LoNNe @ kyba @ Serial 1443  
Permanent link to this record
 

 
Author Yang, Y.; Yu, Y.; Yang, B.; Zhou, H.; Pan, J. url  doi
openurl 
  Title Physiological responses to daily light exposure Type Journal Article
  Year 2016 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 6 Issue Pages 24808  
  Keywords Animals  
  Abstract Long daylength artificial light exposure associates with disorders, and a potential physiological mechanism has been proposed. However, previous studies have examined no more than three artificial light treatments and limited metabolic parameters, which have been insufficient to demonstrate mechanical responses. Here, comprehensive physiological response curves were established and the physiological mechanism was strengthened. Chicks were illuminated for 12, 14, 16, 18, 20, or 22 h periods each day. A quadratic relationship between abdominal adipose weight (AAW) and light period suggested that long-term or short-term light exposure could decrease the amount of AAW. Quantitative relationships between physiological parameters and daily light period were also established in this study. The relationships between triglycerides (TG), cholesterol (TC), glucose (GLU), phosphorus (P) levels and daily light period could be described by quadratic regression models. TG levels, AAW, and BW positively correlated with each other, suggesting long-term light exposure significantly increased AAW by increasing TG thus resulting in greater BW. A positive correlation between blood triiodothyronine (T3) levels and BW suggested that daily long-term light exposure increased BW by thyroid hormone secretion. Though the molecular pathway remains unknown, these results suggest a comprehensive physiological mechanism through which light exposure affects growth.  
  Address College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27098210 Approved no  
  Call Number LoNNe @ kyba @ Serial 1424  
Permanent link to this record
 

 
Author Mavraki, N.; Georgiadis, M.; Koutsikopoulos, C.; Tzanatos, E. url  doi
openurl 
  Title Unravelling the nocturnal appearance of bogue Boops boops shoals in the anthropogenically modified shallow littoral Type Journal Article
  Year 2016 Publication Journal of Fish Biology Abbreviated Journal J Fish Biol  
  Volume Issue Pages  
  Keywords Animals; artificial habitats; coastal zone; fish behaviour; nocturnal migration; predation avoidance; Boops boops; fish  
  Abstract In the present study the role of the nocturnal migration of bogue Boops boops shoals to anthropogenically modified shallow littoral locations was examined, evaluating four alternative hypotheses: (1) feeding, (2) reproduction, (3) attraction of B. boops to artificial light and (4) concealment in the darkness related to predation avoidance. All hypotheses apart from predation avoidance were rejected, as B. boops tended to concentrate in shaded locations of wider illuminated areas, a finding not only important concerning fish behaviour, but also with significant management implications.  
  Address Section of Animal Biology, Department of Biology, University of Patras, GR 26504 Rio, Patras, Greece; ninon.mavraki(at)gmail.com  
  Corporate Author Thesis  
  Publisher FSBI Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1112 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27094613 Approved no  
  Call Number IDA @ john @ Serial 1447  
Permanent link to this record
 

 
Author Tewolde, F.T.; Lu, N.; Shiina, K.; Maruo, T.; Takagaki, M.; Kozai, T.; Yamori, W. url  doi
openurl 
  Title Nighttime Supplemental LED Inter-lighting Improves Growth and Yield of Single-Truss Tomatoes by Enhancing Photosynthesis in Both Winter and Summer Type Journal Article
  Year 2016 Publication Frontiers in Plant Science Abbreviated Journal Front Plant Sci  
  Volume 7 Issue Pages 448  
  Keywords Plants; LED; fruit quality; lighting period; photosynthesis; plant factory; single-truss tomato; supplemental lighting; yield  
  Abstract Greenhouses with sophisticated environmental control systems, or so-called plant factories with solar light, enable growers to achieve high yields of produce with desirable qualities. In a greenhouse crop with high planting density, low photosynthetic photon flux density (PPFD) at the lower leaves tends to limit plant growth, especially in the winter when the solar altitude and PPFD at the canopy are low and day length is shorter than in summer. Therefore, providing supplemental lighting to the lower canopy can increase year-round productivity. However, supplemental lighting can be expensive. In some places, the cost of electricity is lower at night, but the effect of using supplemental light at night has not yet been examined. In this study, we examined the effects of supplemental LED inter-lighting (LED inter-lighting hereafter) during the daytime or nighttime on photosynthesis, growth, and yield of single-truss tomato plants both in winter and summer. We used LED inter-lighting modules with combined red and blue light to illuminate lower leaves right after the first anthesis. The PPFD of this light was 165 mumol m(-2) s(-1) measured at 10 cm from the LED module. LED inter-lighting was provided from 4:00 am to 4:00 pm for the daytime treatments and from 10:00 pm to 10:00 am for the nighttime treatments. Plants exposed only to solar light were used as controls. Daytime LED inter-lighting increased the photosynthetic capacity of middle and lower canopy leaves, which significantly increased yield by 27% in winter; however, photosynthetic capacity and yield were not significantly increased during summer. Nighttime LED inter-lighting increased photosynthetic capacity in both winter and summer, and yield increased by 24% in winter and 12% in summer. In addition, nighttime LED inter-lighting in winter significantly increased the total soluble solids and ascorbic acid content of the tomato fruits, by 20 and 25%, respectively. Use of nighttime LED inter-lighting was also more cost-effective than daytime inter-lighting. Thus, nighttime LED inter-lighting can effectively improve tomato plant growth and yield with lower energy cost compared with daytime both in summer and winter.  
  Address Center for Environment, Health and Field Sciences, Chiba University, Kashiwa, Japan; Department of Biological Sciences, Faculty of Science, The University of Tokyo, Japan  
  Corporate Author Thesis  
  Publisher Frontiers Media S.A. Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1664-462X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27092163; PMCID:PMC4823311 Approved no  
  Call Number IDA @ john @ Serial 1434  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: