toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Scheffler, T.; Kyba, C.C.M. url  openurl
  Title Measuring Social Jetlag in Twitter Data Type Conference Article
  Year 2016 Publication Proceedings of the Tenth International AAAI Conference on Web and Social Media (ICWSM 2016) Abbreviated Journal  
  Volume Issue Pages 675-678  
  Keywords Human Health; Sunlight; Society  
  Abstract Social constraints have replaced the natural cycle of light and darkness as the main determinant of wake-up and activity times for many people. In this paper we show how Twitter activity can be used as a source of large-scale, naturally occurring data for the study of circadian rhythm in humans. Our year-long initial study is based on almost 1.5 million observations by over 200,000 users. The progression of the onset of Twitter activity times on free days in the course of the year is consistent with previous survey-based research on wake

times. We show that the difference in wake-up time (implicating lack of sleep) on weekdays compared to Sundays is between 1 hour and over 2 hours depending on the time of year. The data also supports the assertion that Daylight Saving Time greatly disrupts the easing of social jetlag in the Spring transition.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICWSM 2016  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1453  
Permanent link to this record
 

 
Author Brady, A.; Willis, B.; Harder, L.; Vizel, P. url  doi
openurl 
  Title Lunar Phase Modulates Circadian Gene Expression Cycles in the Broadcast Spawning Coral Acropora millepora Type Journal Article
  Year 2016 Publication Biological Bulletin Abbreviated Journal Biol Bullet  
  Volume 230 Issue 2 Pages 130-142  
  Keywords Animals; corals; Acropora millepora; lunar cycle; Circadian Rhythm; gene expression; moon  
  Abstract Many broadcast spawning corals in multiple reef regions release their gametes with incredible temporal precision just once per year, using the lunar cycle to set the night of spawning. Moonlight, rather than tides or other lunar-regulated processes, is thought to be the proximate factor responsible for linking the night of spawning to the phase of the Moon. We compared patterns of gene expression among colonies of the broadcast spawning coral Acropora millepora at different phases of the lunar cycle, and when they were maintained under one of three experimentally simulated lunar lighting treatments: i) lunar lighting conditions matching those on the reef, or lunar patterns mimicking either ii) constant full Moon conditions, or iii) constant new Moon conditions. Normal lunar illumination was found to shift both the level and timing of clock gene transcription cycles between new and full moons, with the peak hour of expression for a number of genes occurring earlier in the evening under a new Moon when compared to a full Moon. When the normal lunar cycle is replaced with nighttime patterns equivalent to either a full Moon or a new Moon every evening, the normal monthlong changes in the level of expression are destroyed for most genes. In combination, these results indicate that daily changes in moonlight that occur over the lunar cycle are essential for maintaining normal lunar periodicity of clock gene transcription, and this may play a role in regulating spawn timing. These data also show that low levels of light pollution may have an impact on coral biological clocks.  
  Address Department of Biological Science, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada; pvize(at)ucalgary.ca  
  Corporate Author Thesis  
  Publisher Marine Biological Laboratory Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1476  
Permanent link to this record
 

 
Author Pacheco, Y.M.; Martin, G.J.; Bybee, S.M. url  doi
openurl 
  Title On the Phototactic Response of RwandanDiaphanesMotschulsky (Coleoptera: Lampyridae) to a Trap with a 630Nm Red Light Type Journal Article
  Year 2016 Publication The Coleopterists Bulletin Abbreviated Journal The Coleopterists Bulletin  
  Volume 70 Issue 3 Pages 559-561  
  Keywords Animals  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-065X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1531  
Permanent link to this record
 

 
Author Costin, K.J.; Boulton, A.M. url  doi
openurl 
  Title A Field Experiment on the Effect of Introduced Light Pollution on Fireflies (Coleoptera: Lampyridae) in the Piedmont Region of Maryland Type Journal Article
  Year 2016 Publication The Coleopterists Bulletin Abbreviated Journal The Coleopterists Bulletin  
  Volume 70 Issue 1 Pages 84-86  
  Keywords Animals; insects; fireflies; Coleoptera; Lampyridae; Coleoptera Lampyridae; artificial light at night; ecology; light pollution  
  Abstract (none)  
  Address Environmental Biology Hood College 401 Rosemont Avenue Frederick, MD 21701, U.S.A.; kjc(at)hood.edu  
  Corporate Author Thesis  
  Publisher BioOne Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-065X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1406  
Permanent link to this record
 

 
Author Watson, M.J.; Wilson, D.R.; Mennill, D.J. url  doi
openurl 
  Title Anthropogenic light is associated with increased vocal activity by nocturnally migrating birds Type Journal Article
  Year 2016 Publication The Condor Abbreviated Journal The Condor  
  Volume 118 Issue 2 Pages 338-344  
  Keywords Animals  
  Abstract Anthropogenic modifications to the natural environment have profound effects on wild animals, through structural changes to natural ecosystems as well as anthropogenic disturbances such as light and noise. For animals that migrate nocturnally, anthropogenic light can interfere with migration routes, flight altitudes, and social activities that accompany migration, such as acoustic communication. We investigated the effect of anthropogenic light on nocturnal migration of birds through the Great Lakes ecosystem. Specifically, we recorded the vocal activity of migrating birds and compared the number of nocturnal flight calls produced above rural areas with ground-level artificial lights compared to nearby areas without lights. We show that more nocturnal flight calls are detected over artificially lit areas. The median number of nocturnal flight calls recorded at sites with artificial lights (31 per night, interquartile range: 15–135) was 3 times higher than at nearby sites without artificial lights (11 per night, interquartile range: 4–39). By contrast, the number of species detected at lit and unlit sites did not differ significantly (artificially lit sites: 6.5 per night, interquartile range: 5.0–8.8; unlit sites: 4.5 per night, interquartile range: 2.0–7.0). We conclude that artificial lighting changes the behavior of nocturnally migrating birds. The increased detections could be a result of ground-level light sources altering bird behavior during migration. For example, birds might have changed their migratory route to pass over lit areas, flown at lower altitudes over lit areas, increased their calling rate over lit areas, or remained longer over lit areas. Our results for ground-level lights correspond to previous findings demonstrating that migratory birds are influenced by lights on tall structures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-5422 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1422  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: