|   | 
Details
   web
Records
Author Yuan, D.; Collage, R.D.; Huang, H.; Zhang, X.; Kautza, B.C.; Lewis, A.J.; Zuckerbraun, B.S.; Tsung, A.; Angus, D.C.; Rosengart, M.R.
Title Blue light reduces organ injury from ischemia and reperfusion Type Journal Article
Year 2016 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc Natl Acad Sci U S A
Volume (down) 113 Issue 19 Pages 5239-5244
Keywords Biology
Abstract Evidence suggests that light and circadian rhythms profoundly influence the physiologic capacity with which an organism responds to stress. However, the ramifications of light spectrum on the course of critical illness remain to be determined. Here, we show that acute exposure to bright blue spectrum light reduces organ injury by comparison with bright red spectrum or ambient white fluorescent light in two murine models of sterile insult: warm liver ischemia/reperfusion (I/R) and unilateral renal I/R. Exposure to bright blue light before I/R reduced hepatocellular injury and necrosis and reduced acute kidney injury and necrosis. In both models, blue light reduced neutrophil influx, as evidenced by reduced myeloperoxidase (MPO) within each organ, and reduced the release of high-mobility group box 1 (HMGB1), a neutrophil chemotactant and key mediator in the pathogenesis of I/R injury. The protective mechanism appeared to involve an optic pathway and was mediated, in part, by a sympathetic (beta3 adrenergic) pathway that functioned independent of significant alterations in melatonin or corticosterone concentrations to regulate neutrophil recruitment. These data suggest that modifying the spectrum of light may offer therapeutic utility in sterile forms of cellular injury.
Address Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15261 rosengartmr@upmc.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:27114521 Approved no
Call Number LoNNe @ kyba @ Serial 1443
Permanent link to this record
 

 
Author Smolka, J.; Baird, E.; el Jundi, B.; Reber, T.; Byrne, M.J.; Dacke, M.
Title Night sky orientation with diurnal and nocturnal eyes: dim-light adaptations are critical when the moon is out of sight Type Journal Article
Year 2016 Publication Animal Behaviour Abbreviated Journal Animal Behaviour
Volume (down) 111 Issue Pages 127-146
Keywords Animals; dung beetle; insect; Milky Way; nocturnal adaptation; polarized moonlight; sky compass; straight-line orientation; vision; Scarabaeus; Scarabaeus lamarcki; Scarabaeus satyrus
Abstract The visual systems of many animals feature energetically costly specializations to enable them to function in dim light. It is often unclear, however, how large the behavioural benefit of these specializations is, because a direct comparison in a behaviourally relevant task between closely related day- and night-active species is not usually possible. Here we compared the orientation performance of diurnal and nocturnal species of dung beetles, Scarabaeus (Kheper) lamarcki and Scarabaeus satyrus, respectively, attempting to roll dung balls along straight paths both during the day and at night. Using video tracking, we quantified the straightness of paths and the repeatability of roll bearings as beetles exited a flat arena in their natural habitat or under controlled conditions indoors. Both species oriented equally well when either the moon or an artificial point light source was available, but when the view of the moon was blocked and only wide-field cues such as the lunar polarization pattern or the stars were available for orientation, nocturnal beetles were oriented substantially better. We found no evidence that ball-rolling speed changed with light level, which suggests little or no temporal summation in the visual system. Finally, we found that both diurnal and nocturnal beetles tended to choose bearings that led them towards a bright light source, but away from a dim one. Our results show that even diurnal insects, at least those with superposition eyes, could orient by the light of the moon, but that dim-light adaptations are needed for precise orientation when the moon is not visible.
Address Department of Biology, Lund University, Biology Building, Sölvegatan 35, 223 62 Lund, Sweden; jochen.smolka(at)biol.lu.se
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-3472 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1317
Permanent link to this record
 

 
Author Travis, R.C.; Balkwill, A.; Fensom, G.K.; Appleby, P.N.; Reeves, G.K.; Wang, X.-S.; Roddam, A.W.; Gathani, T.; Peto, R.; Green, J.; Key, T.J.; Beral, V.
Title Night Shift Work and Breast Cancer Incidence: Three Prospective Studies and Meta-analysis of Published Studies Type Journal Article
Year 2016 Publication Journal of the National Cancer Institute Abbreviated Journal JNCI J Natl Cancer Inst
Volume (down) 108 Issue 12 Pages djw169
Keywords Human Health
Abstract Background: It has been proposed that night shift work could increase breast cancer incidence. A 2007 World Health Organization review concluded, mainly from animal evidence, that shift work involving circadian disruption is probably carcinogenic to humans. We therefore aimed to generate prospective epidemiological evidence on night shift work and breast cancer incidence.

Methods: Overall, 522 246 Million Women Study, 22 559 EPIC-Oxford, and 251 045 UK Biobank participants answered questions on shift work and were followed for incident cancer. Cox regression yielded multivariable-adjusted breast cancer incidence rate ratios (RRs) and 95% confidence intervals (CIs) for night shift work vs no night shift work, and likelihood ratio tests for interaction were used to assess heterogeneity. Our meta-analyses combined these and relative risks from the seven previously published prospective studies (1.4 million women in total), using inverse-variance weighted averages of the study-specific log RRs.

Results: In the Million Women Study, EPIC-Oxford, and UK Biobank, respectively, 673, 28, and 67 women who reported night shift work developed breast cancer, and the RRs for any vs no night shift work were 1.00 (95% CI = 0.92 to 1.08), 1.07 (95% CI = 0.71 to 1.62), and 0.78 (95% CI = 0.61 to 1.00). In the Million Women Study, the RR for 20 or more years of night shift work was 1.00 (95% CI = 0.81 to 1.23), with no statistically significant heterogeneity by sleep patterns or breast cancer risk factors. Our meta-analysis of all 10 prospective studies included 4660 breast cancers in women reporting night shift work; compared with other women, the combined relative risks were 0.99 (95% CI = 0.95 to 1.03) for any night shift work, 1.01 (95% CI = 0.93 to 1.10) for 20 or more years of night shift work, and 1.00 (95% CI = 0.87 to 1.14) for 30 or more years.

Conclusions: The totality of the prospective evidence shows that night shift work, including long-term shift work, has little or no effect on breast cancer incidence.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8874 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1540
Permanent link to this record
 

 
Author Bennie, J.; Davies, T.W.; Cruse, D.; Gaston, K.J.
Title Ecological effects of artificial light at night on wild plants Type Journal Article
Year 2016 Publication Journal of Ecology Abbreviated Journal J Ecol
Volume (down) 104 Issue 3 Pages 611-620
Keywords Plants; wild plants; photobiology; Circadian; Ecophysiology; light cycles; light pollution; photoperiodism; photopollution; physiology; sky glow; urban ecology
Abstract 1.Plants use light as a source of both energy and information. Plant physiological responses to light, and interactions between plants and animals (such as herbivory and pollination), have evolved under a more or less stable regime of 24-hour cycles of light and darkness, and, outside of the tropics, seasonal variation in daylength.

2.The rapid spread of outdoor electric lighting across the globe over the past century has caused an unprecedented disruption to these natural light cycles. Artificial light is widespread in the environment, varying in intensity by several orders of magnitude from faint skyglow reflected from distant cities to direct illumination of urban and suburban vegetation.

3.In many cases artificial light in the nighttime environment is sufficiently bright to induce a physiological response in plants, affecting their phenology, growth form and resource allocation. The physiology, behaviour and ecology of herbivores and pollinators is also likely to be impacted by artificial light. Thus, understanding the ecological consequences of artificial light at night is critical to determine the full impact of human activity on ecosystems.

4.Synthesis. Understanding the impacts of artificial nighttime light on wild plants and natural vegetation requires linking the knowledge gained from over a century of experimental research on the impacts of light on plants in the laboratory and greenhouse with knowledge of the intensity, spatial distribution, spectral composition and timing of light in the nighttime environment. To understand fully the extent of these impacts requires conceptual models that can (i) characterise the highly heterogeneous nature of the nighttime light environment at a scale relevant to plant physiology, and (ii) scale physiological responses to predict impacts at the level of the whole plant, population, community and ecosystem.
Address Environment and Sustainability Institute, University of Exeter, Penryn, United Kimgdom; j.j.bennie(at)exeter.ac.uk
Corporate Author Thesis
Publisher Wiley Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0477 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1350
Permanent link to this record
 

 
Author Beck, W.; Gobatto, C.
Title Effect of high wavelengths low intensity light during dark period on physical exercise performance, biochemical and haematological parameters of swimming rats Type Journal Article
Year 2016 Publication Acta Physiologica Hungarica Abbreviated Journal Acta Physiol Hung
Volume (down) 103 Issue 1 Pages 112-120
Keywords Animals
Abstract Nocturnal rodents should be assessed at an appropriate time of day, which leads to a challenge in identifying an adequate environmental light which allows animal visualisation without perturbing physiological homeostasis. Thus, we analysed the influence of high wavelength and low intensity light during dark period on physical exercise and biochemical and haematological parameters of nocturnal rats. We submitted 80 animals to an exhaustive exercise at individualised intensity under two different illuminations during dark period. Red light (> 600 nm; < 15lux) was applied constantly during dark period (EI; for experimental illumination groups) or only for handling and assessments (SI; for standard illumination groups). EI led to worse haematological and biochemical conditions, demonstrating that EI alone can influence physiological parameters and jeopardise result interpretation. SI promotes normal physiological conditions and greater aerobic tolerance than EI, showing the importance of a correct illumination pattern for all researchers that employ nocturnal rats for health/disease or sports performance experiments.
Address Laboratory of Applied Sport Physiology, School of Physical Education, University of Campinas , Sao Paulo , Brasil
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0231-424X ISBN Medium
Area Expedition Conference
Notes PMID:27030633 Approved no
Call Number LoNNe @ kyba @ Serial 1410
Permanent link to this record