|   | 
Details
   web
Records
Author Yuan, D.; Collage, R.D.; Huang, H.; Zhang, X.; Kautza, B.C.; Lewis, A.J.; Zuckerbraun, B.S.; Tsung, A.; Angus, D.C.; Rosengart, M.R.
Title Blue light reduces organ injury from ischemia and reperfusion Type Journal Article
Year (down) 2016 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc Natl Acad Sci U S A
Volume 113 Issue 19 Pages 5239-5244
Keywords Biology
Abstract Evidence suggests that light and circadian rhythms profoundly influence the physiologic capacity with which an organism responds to stress. However, the ramifications of light spectrum on the course of critical illness remain to be determined. Here, we show that acute exposure to bright blue spectrum light reduces organ injury by comparison with bright red spectrum or ambient white fluorescent light in two murine models of sterile insult: warm liver ischemia/reperfusion (I/R) and unilateral renal I/R. Exposure to bright blue light before I/R reduced hepatocellular injury and necrosis and reduced acute kidney injury and necrosis. In both models, blue light reduced neutrophil influx, as evidenced by reduced myeloperoxidase (MPO) within each organ, and reduced the release of high-mobility group box 1 (HMGB1), a neutrophil chemotactant and key mediator in the pathogenesis of I/R injury. The protective mechanism appeared to involve an optic pathway and was mediated, in part, by a sympathetic (beta3 adrenergic) pathway that functioned independent of significant alterations in melatonin or corticosterone concentrations to regulate neutrophil recruitment. These data suggest that modifying the spectrum of light may offer therapeutic utility in sterile forms of cellular injury.
Address Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15261 rosengartmr@upmc.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:27114521 Approved no
Call Number LoNNe @ kyba @ Serial 1443
Permanent link to this record
 

 
Author Stevens, R.G.
Title Circadian disruption and health: Shift work as a harbinger of the toll taken by electric lighting Type Journal Article
Year (down) 2016 Publication Chronobiology International Abbreviated Journal Chronobiol Int
Volume 33 Issue 6 Pages 589-594
Keywords Health
Abstract Electric light is one of the signature inventions of human beings. A problem, however, is that electric light can confuse our endogenous circadian rhythmicity. It has now become apparent that circadian biology is fundamental to the functioning and adaptation of almost all life forms. In the modern world, everyone is exposed to electric light during the day and night, and thereby can experience some level of circadian disruption. Perhaps as a canary in the coal mine, study of people whose work hours include nighttime (shift workers) is beginning to yield insights on the adverse health effects of circadian disruption from electric light.
Address a UConn Health Center , Farmington , CT , USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0742-0528 ISBN Medium
Area Expedition Conference
Notes PMID:27088628 Approved no
Call Number LoNNe @ kyba @ Serial 1444
Permanent link to this record
 

 
Author Bliss-Ketchum, L.L.; de Rivera, C.E.; Turner, B.C.; Weisbaum, D.M.
Title The effect of artificial light on wildlife use of a passage structure Type Journal Article
Year (down) 2016 Publication Biological Conservation Abbreviated Journal Biological Conservation
Volume 199 Issue Pages 25-28
Keywords Animals; animal movement; Columbia black-tailed deer; deer; Odocoileus hemionus columbianus; deer mouse; Peromyscus maniculatus; opossum; Didelphis virginiana; artificial light at night
Abstract Barriers to animal movement can isolate populations, impacting their genetic diversity, susceptibility to disease, and access to resources. Barriers to movement may be caused by artificial light, which is known to disrupt bird, sea turtle, and bat behavior, but few studies have experimentally investigated the effects of artificial light on movement for a suite of terrestrial vertebrates. Therefore, we studied the effect of ecological light pollution on animal usage of a bridge under-road passage structure. On a weekly basis, sections of the structure were subjected to different light treatments including no light added, followed by a Reference period when lights were off in all the structure sections. Sand track data revealed use by 23 mammals, birds, reptiles and amphibians, nine of which had > 30 tracks for species-level analysis. Columbia black-tailed deer (Odocoileus hemionus columbianus) traversed under unlit bridge sections much less when neighboring sections were lit compared to when none were, suggesting avoidance due to any nearby presence of artificial light. Similarly, deer mouse (Peromyscus maniculatus) and opossum (Didelphis virginiana) track paths were less frequent in the lit sections than the ambient. Crossing was correlated with temporal or spatial factors but not light for three of the other species. These findings suggest that artificial light may be reducing habitat connectivity for some species though not providing a strong barrier for others. Such information is needed to inform mitigation of habitat fragmentation in the face of expanding urbanization.
Address Department of Environmental Science & Management, Portland State University, PO Box 751, Portland, OR 97207, USA; blissket(at)pdx.edu
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-3207 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1445
Permanent link to this record
 

 
Author Qian, J.; Scheer, F.A.J.L.
Title Circadian System and Glucose Metabolism: Implications for Physiology and Disease Type Journal Article
Year (down) 2016 Publication Trends in Endocrinology and Metabolism: TEM Abbreviated Journal Trends Endocrinol Metab
Volume 27 Issue 5 Pages 282-293
Keywords Human Health; circadian rhythms; food timing; glucose metabolism; melatonin; sleep; type 2 diabetes
Abstract The circadian system serves one of the most fundamental properties present in nearly all organisms: it generates 24-h rhythms in behavioral and physiological processes and enables anticipating and adapting to daily environmental changes. Recent studies indicate that the circadian system is important in regulating the daily rhythm in glucose metabolism. Disturbance of this circadian control or of its coordination relative to the environmental/behavioral cycle, such as in shift work, eating late, or due to genetic changes, results in disturbed glucose control and increased type 2 diabetes risk. Therefore, an in-depth understanding of the mechanisms underlying glucose regulation by the circadian system and its disturbance may help in the development of therapeutic interventions against the deleterious health consequences of circadian disruption.
Address Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA; fscheer(at)bwh.harvard.edu
Corporate Author Thesis
Publisher Cell Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1043-2760 ISBN Medium
Area Expedition Conference
Notes PMID:27079518; PMCID:PMC4842150 Approved no
Call Number IDA @ john @ Serial 1446
Permanent link to this record
 

 
Author Mavraki, N.; Georgiadis, M.; Koutsikopoulos, C.; Tzanatos, E.
Title Unravelling the nocturnal appearance of bogue Boops boops shoals in the anthropogenically modified shallow littoral Type Journal Article
Year (down) 2016 Publication Journal of Fish Biology Abbreviated Journal J Fish Biol
Volume Issue Pages
Keywords Animals; artificial habitats; coastal zone; fish behaviour; nocturnal migration; predation avoidance; Boops boops; fish
Abstract In the present study the role of the nocturnal migration of bogue Boops boops shoals to anthropogenically modified shallow littoral locations was examined, evaluating four alternative hypotheses: (1) feeding, (2) reproduction, (3) attraction of B. boops to artificial light and (4) concealment in the darkness related to predation avoidance. All hypotheses apart from predation avoidance were rejected, as B. boops tended to concentrate in shaded locations of wider illuminated areas, a finding not only important concerning fish behaviour, but also with significant management implications.
Address Section of Animal Biology, Department of Biology, University of Patras, GR 26504 Rio, Patras, Greece; ninon.mavraki(at)gmail.com
Corporate Author Thesis
Publisher FSBI Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-1112 ISBN Medium
Area Expedition Conference
Notes PMID:27094613 Approved no
Call Number IDA @ john @ Serial 1447
Permanent link to this record