Home | << 1 2 3 4 5 6 7 8 9 10 >> [11–20] |
![]() |
Aarts, M. P. J., Hartmeyer, S. L., Morsink, K., Kort, H. S. M., & de Kort, Y. A. W. (2020). Can Special Light Glasses Reduce Sleepiness and Improve Sleep of Nightshift Workers? A Placebo-Controlled Explorative Field Study. Clocks & Sleep, 2(2), 225–245.
Abstract: Nightshift workers go against the natural sleep–wake rhythm. Light can shift the circadian clock but can also induce acute alertness. This placebo-controlled exploratory field study examined the effectiveness of light glasses to improve alertness while reducing the sleep complaints of hospital nurses working nightshifts. In a crossover within-subjects design, 23 nurses participated, using treatment glasses and placebo glasses. Sleepiness and sleep parameters were measured. A linear mixed model analysis on sleepiness revealed no significant main effect of the light intervention. An interaction effect was found indicating that under the placebo condition, sleepiness was significantly higher on the first nightshift than on the last night, while under the treatment condition, sleepiness remained stable across nightshift sessions. Sleepiness during the commute home also showed a significant interaction effect, demonstrating that after the first nightshift, driver sleepiness was higher for placebo than for treatment. Subjective sleep quality showed a negative main effect of treatment vs. placebo, particularly after the first nightshift. In retrospect, both types of light glasses were self-rated as effective. The use of light glasses during the nightshift may help to reduce driver sleepiness during the commute home, which is relevant, as all participants drove home by car or (motor) bike.
Keywords: Human Health
|
Abay, K. A., & Amare, M. (2018). Night light intensity and women's body weight: Evidence from Nigeria. Econ Hum Biol, 31, 238–248.
Abstract: The prevalence of overweight and obesity are increasing in many African countries and hence becoming regional public health challenges. We employ satellite-based night light intensity data as a proxy for urbanization to investigate the relationship between urbanization and women's body weight. We use two rounds of the Demographic and Health Survey data from Nigeria. We employ both nonparametric and parametric estimation approaches that exploit both the cross-sectional and longitudinal variations in night light intensities. Our empirical analysis reveals nonlinear relationships between night light intensity and women's body weight measures. Doubling the sample's average level of night light intensity is associated with up to a ten percentage point increase in the probability of overweight. However, despite the generally positive relationship between night light intensity and women's body weight, the strength of the relationship varies across the assorted stages of night light intensity. Early stages of night light intensity are not significantly associated with women's body weight, while higher stages of nightlight intensities are associated with higher rates of overweight and obesity. Given that night lights are strong predictors of urbanization and related economic activities, our results hint at nonlinear relationships between various stages of urbanization and women's body weight.
Keywords: Remote Sensing; Human Health; Adolescent; Adult; Body Mass Index; *Body Weight; Cross-Sectional Studies; Female; Health Surveys; Humans; Lighting/*statistics & numerical data; Middle Aged; Nigeria/epidemiology; Obesity/epidemiology; Overweight/*epidemiology; Prevalence; *Urbanization; Young Adult; *Bmi; *Nigeria; *Night light; *Obesity; *Overweight; *Urbanization
|
Abbott, S. M., Malkani, R. G., & Zee, P. C. (2018). Circadian disruption and human health: A bidirectional relationship. Eur J Neurosci, in press.
Abstract: Circadian rhythm disorders have been classically associated with disorders of abnormal timing of the sleep-wake cycle, however circadian dysfunction can play a role in a wide range of pathology, ranging from the increased risk for cardiometabolic disease and malignancy in shift workers, prompting the need for a new field focused on the larger concept of circadian medicine. The relationship between circadian disruption and human health is bidirectional, with changes in circadian amplitude often preceding the classical symptoms of neurodegenerative disorders. As our understanding of the importance of circadian dysfunction in disease grows, we need to develop better clinical techniques for identifying circadian rhythms and also develop circadian based strategies for disease management. Overall this review highlights the need to bring the concept of time to all aspects of medicine, emphasizing circadian medicine as a prime example of both personalized and precision medicine.
Keywords: Human Health; Review
|
Ahmed M. A. (2020). Avoiding room light during night may stimulate immunity in COVID-19 patients by promoting melatonin production. Melatonin Research, 3(4), 476–481.
Abstract: COVID-19 is one of the greatest health issues facing humankind for many decades; it emerged in Wuhan, China, late in December 2019, and rapidly spread over the world within the short period. This report emphasizes the potential hazards of exposure to room light at night which affects the immunity of COVID-19 patients by suppressing their melatonin, which is only released from the pineal gland at night. Exposure to light at night is especially common in the hospital setting. This may make the symptom worse for the hospitalized patients and the light at night should not be ignored. Thus, I suggest that COVID-19 patients should avoid light at night either by wearing eye masks or darkening the room to enhance pineal melatonin synthesis and increase their serum melatonin levels.
Keywords: Human Health; Commentary
|
Akacem, L. D., Wright, K. P. J., & LeBourgeois, M. K. (2016). Bedtime and evening light exposure influence circadian timing in preschool-age children: A field study. Neurobiol Sleep Circadian Rhythms, 1(2), 27–31.
Abstract: Light exposure and sleep timing are two factors that influence inter-individual variability in the timing of the human circadian clock. The aim of this study was to quantify the degree to which evening light exposure predicts variance in circadian timing over and above bedtime alone in preschool children. Participants were 21 children ages 4.5-5.0 years (4.7 +/- 0.2 years; 9 females). Children followed their typical sleep schedules for 4 days during which time they wore a wrist actigraph to assess sleep timing and a pendant light meter to measure minute-by-minute illuminance levels in lux. On the 5th day, children participated in an in-home dim-light melatonin onset (DLMO) assessment. Light exposure in the 2 h before bedtime was averaged and aggregated across the 4 nights preceding the DLMO assessment. Mean DLMO and bedtime were 19:22 +/- 01:04 and 20:07 +/- 00:46, respectively. Average evening light exposure was 710.1 +/- 1418.2 lux. Children with later bedtimes (lights-off time) had more delayed melatonin onset times (r=0.61, p=0.002). Evening light exposure was not independently associated with DLMO (r=0.32, p=0.08); however, a partial correlation between evening light exposure and DLMO when controlling for bedtime yielded a positive correlation (r=0.46, p=0.02). Bedtime explained 37.3% of the variance in the timing of DLMO, and evening light exposure accounted for an additional 13.3% of the variance. These findings represent an important step in understanding factors that influence circadian phase in preschool-age children and have implications for understanding a modifiable pathway that may underlie late sleep timing and the development of evening settling problems in early childhood.
Keywords: Human Health
|