Home | << 1 2 >> |
![]() |
Colman, L. P., Lara, P. H., Bennie, J., Broderick, A. C., de Freitas, J. R., Marcondes, A., et al. (2020). Assessing coastal artificial light and potential exposure of wildlife at a national scale: the case of marine turtles in Brazil. Biodivers Conserv, 29(4), 1135–1152.
Abstract: Coastal areas provide critical nesting habitat for marine turtles. Understanding how artificial light might impact populations is key to guide management strategies. Here we assess the extent to which nesting populations of four marine turtle species—leatherback (Dermochelys coriacea), olive ridley (Lepidochelys olivacea), hawksbill (Eretmochelys imbricata) and two subpopulations of loggerhead (Caretta caretta) turtles—are exposed to light pollution across 604 km of the Brazilian coast. We used yearly night-time satellite images from two 5-year periods (1992–1996 and 2008–2012) from the US Air Force Defense Meteorological Satellite Programme (DMSP) to determine the proportion of nesting areas that are exposed to detectable levels of artificial light and identify how this has changed over time. Over the monitored time-frame, 63.7% of the nesting beaches experienced an increase in night light levels. Based on nest densities, we identified 54 reproductive hotspots: 62.9% were located in areas potentially exposed to light pollution. Light levels appeared to have a significant effect on nest densities of hawksbills and the northern loggerhead turtle stock, however high nest densities were also seen in lit areas. The status of all species/subpopulations has improved across the time period despite increased light levels. These findings suggest that (1) nest site selection is likely primarily determined by variables other than light and (2) conservation strategies in Brazil appear to have been successful in contributing to reducing impacts on nesting beaches. There is, however, the possibility that light also affects hatchlings in coastal waters, and impacts on population recruitment may take longer to fully manifest in nesting numbers. Recommendations are made to further this work to provide deeper insights into the impacts of anthropogenic light on marine turtles.
|
Fritsches, K. A. (2012). Australian Loggerhead sea turtle hatchlings do not avoid yellow. Marine and Freshwater Behaviour and Physiology, 45(2), 79–89.
Abstract: When emerging from the nest, sea turtle hatchlings primarily orient using visual stimuli, with light pollution known to disrupt effective sea localization behavior. Previous studies have shown that sea turtle hatchlings respond differently to different wavelengths of light but Loggerhead hatchlings, exclusively among species tested, have a strong aversion to yellow light (at 600 nm). This study repeats these experiments with an Australian population of Loggerhead hatchlings (Caretta caretta) and Flatback hatchlings (Natator depressus). The orientation preference was measured using a modified y-maze set-up with the animals response observed using an infrared camera. This study showed that both Loggerhead and Flatback hatchlings can see and are attracted to light in the ultraviolet waveband (365 nm) and, to a lesser extent to longer wavelengths of 600 nm and above. The surprising finding was that the Loggerhead hatchlings tested here, unlike their conspecifics in Florida, do not show any avoidance to yellow but are attracted to bright lights of wavelength between 365 nm (UV) and 600 nm. This suggests potential differences in the visual behavior among different populations of sea turtles of the same species. No difference was detected in the response of Loggerhead hatchlings to flickering or steady light stimuli.
|
Lorne, J., & Salmon, M. (2007). Effects of exposure to artificial lighting on orientation of hatchling sea turtles on the beach and in the ocean. Endang. Species Res., 3, 23–30.
Abstract: Artificial lighting disrupts sea turtle hatchling orientation from the nest to the sea. We studied how a light-induced landward crawl affects the later ability of hatchlings to crawl to the sea, and to swim away from the shore from a dark beach. A brief (2 min) landward crawl had no effect on swimming orientation as long as surface waves were present. In a calm sea, landward-crawling hatchlings failed to swim offshore, while those crawling seaward were well oriented. A long (2 h) crawl toward a landward light source, however, impaired the ability of hatchlings to crawl seaward. These results demonstrate that orientation toward artificial light sources compromises the ability of hatchlings to respond to natural orientation cues, both on land and in the sea. Based on these results, we suggest several changes to current management practices used when releasing misoriented turtles in the wild.
|
Sella, K. N., Salmon, M., & Witherington, B. E. (2006). Filtered Streetlights Attract Hatchling Marine Turtles. Chelonian Conservation and Biology, 5(2), 255–261.
Abstract: On many nesting beaches, hatchling marine turtles are exposed to poled street lighting that disrupts their ability to crawl to the sea. Experiments were done to determine how hatchlings responded to street lighting transmitted through 2 filters that excluded the most disruptive wavelengths (those < 530 nm; those < 570 nm). Filtered lighting, however, also attracted the turtles though not as strongly as an unfiltered (high-pressure sodium vapor) lighting. Filtering is therefore of limited utility for light management, especially since other alternatives (such as lowering, shielding, or turning off unnecessary lighting; use of dimmer lights embedded in roadways) are more effective.
|
Stanley, T. R., White, J. M., Teel, S., & Nicholas, M. (2020). Brightness of the Night Sky Affects Loggerhead (Caretta caretta) Sea Turtle Hatchling Misorientation but Not Nest Site Selection. Front. Mar. Sci., 7.
Abstract: Sea turtles in the Gulf of Mexico, which are listed as either threatened or endangered under the US Endangered Species Act, face numerous threats but are particularly susceptible to the negative effects of light pollution on nesting beaches. Light pollution affects the distribution, density, and placement of nests on beaches, and disrupts seafinding in hatchlings emerging from nests; often leading to their death. Rapid urban growth near Gulf Islands National Seashore (GUIS), FL, United States, over the last century has contributed to increased light pollution on its beaches. There is concern that light pollution is causing females to build nests in at-risk locations subject to erosion and flooding, and is causing the observed high rates of hatchling misorientation. From 2015 to 2016, we measured brightness of the night sky, horizon profile, and lunar variables at GUIS at loggerhead (Caretta caretta) nests to assess the effects of brightness on building of at-risk nests and hatchling misorientation. In addition, we quantified the effects of relocating at-risk nests on nest success. We found that contrast in brightness between the landward and seaward directions at GUIS was partially responsible for high rates of hatchling misorientation, and there was a strong moderating influence of lunar fraction and lunar altitude on hatchling misorientation: larger lunar fractions and lower lunar altitudes reduced misorientation. We did not find an effect of artificial light, horizon profile, or lunar fraction on the propensity of loggerheads to build nests in at-risk locations, and found no evidence that relocating nests at GUIS reduced loggerhead nest success. In fact, we found that nest success was improved and hatchling misorientation rates were reduced for relocated loggerhead nests.
|