Aceituno, J., Sánchez, S. F., Aceituno, F. J., GaladÃ-EnrÃquez, D., Negro, J. J., Soriguer, R. C., et al. (2011). An All-Sky Transmission Monitor: ASTMON. Publications of the Astronomical Society of the Pacific, 123(907), 1076–1086.
Abstract: We present here the All-Sky Transmission Monitor (ASTMON), designed to perform a continuous monitoring of the surface brightness of the complete night sky in several bands. The data acquired are used to derive, in addition, a subsequent map of the multiband atmospheric extinction at any location in the sky and a map of the cloud coverage. The instrument has been manufactured to withstand extreme weather conditions and to remain operative. Designed to be fully robotic, it is ideal to be installed outdoors as a permanent monitoring station. The preliminary results based on two of the currently operative units (at Doñana National Park, Huelva, and at the Calar Alto Observatory, AlmerÃa, Spain) are presented here. The parameters derived using ASTMON are in good agreement with those previously reported, which illustrates the validity of the design and the accuracy of the manufacturing. The information provided by this instrument will be presented in forthcoming articles, once we have accumulated a statistically significant amount of data.
|
Arnaud Da Silva, J. M. S., Emmi Schlicht, Mihai Valcu, Bart Kempenaers. (2014). Artificial night lighting rather than traffic noise affects the daily timing of dawn and dusk singing in common European songbirds. Behavioral Ecology, 25(5), 1037–1047.
|
Aubé, M. (2015). Physical behaviour of anthropogenic light propagation into the nocturnal environment. Philos Trans R Soc Lond B Biol Sci, 370, 20140117.
Abstract: Propagation of artificial light at night (ALAN) in the environment is now known to have non negligible consequences on fauna, flora and human health. These consequences depend on light levels and their spectral power distributions, which in turn rely on the efficiency of various physical processes involved in the radiative transfer of this light into the atmosphere and its interactions with the built and natural environment. ALAN can affect the living organisms by direct lighting and indirect lighting (scattered by the sky and clouds and/or reflected by local surfaces). This paper mainly focuses on the behaviour of the indirect light scattered under clear sky conditions. Various interaction processes between anthropogenic light sources and the natural environment are discussed. This work mostly relies on a sensitivity analysis conducted with the light pollution radiative transfer model, Illumina (Aubé et al. 2005: Light pollution modelling and detection in a heterogeneous environment: toward a night-time aerosol optical depth retrieval method. In Proc. SPIE 2005, vol. 5890, San Diego, California, USA). More specifically, the impact of (i) the molecular and aerosol scattering and absorption, (ii) the second order of scattering, (iii) the topography and obstacle blocking, (iv) the ground reflectance and (v) the spectrum of light devices and their angular emission functions are examined. This analysis considers different behaviour as a function of the distance from the city centre, along with different zenith viewing angles in the principal plane.
|
Aubé, M., & Kocifaj, M. (2012). Using two light-pollution models to investigate artificial sky radiances at Canary Islands observatories: Light-pollution models and artificial sky radiances. Monthly Notices of the Royal Astronomical Society, 422(1), 819–830.
Abstract: Astronomical observations are increasingly limited by light pollution, which is a product of the over-illumination of the night sky. To predict both the angular distribution of scattered light and the ground-reaching radiative fluxes, a set of models has been introduced in recent decades. Two distinct numerical tools, MSNsRAu and ILLUMINA, are compared in this paper, with the aim of identifying their strengths and weaknesses. The numerical experiment comprises the simulation of spectral radiances in the region of the Canary Islands. In particular, the light fields near the Roque de los Muchachos and Teide observatories are computed under various turbidity conditions. It is shown that ILLUMINA has enhanced accuracy at low elevation angles. However, ILLUMINA is time-consuming because of the two scattering orders incorporated into the calculation scheme. Under low-turbidity conditions and for zenith angles smaller than 70° the two models agree well, and thus can be successfully applied to typical cloudless situations at the majority of observatories. MSNsRAu is well optimized for large-scale simulations. In particular, the grid size is adapted dynamically depending on the distance between a light source and a hypothetical observer. This enables rapid numerical modelling for large territories. MSNsRAu is also well suited for the mass modelling of night-sky radiances after ground-based light sources are hypothetically changed. This enables an optimum design of public lighting systems and a time-efficient evaluation of the optical effects related to different lamp spectra or different lamp distributions. ILLUMINA provides two diagnostic geographical maps to help local authorities concerned about light-pollution control. The first map allows the identification of the relative contribution of each ground element to the observed sky radiance at a given viewing angle, while the second map gives the sensitivity, basically saying how each ground element contributes per lumen installed.
|
Aubé, M., Fortin, N., Turcotte, S., García, B., Mancilla, A., & Maya, J. (2014). Evaluation of the Sky Brightness at Two Argentinian Astronomical Sites. Publications of the Astronomical Society of the Pacific, , 000.
Abstract: Light pollution is a growing concern at many levels, especially for the astronomical community. Indeed, not only does artificial lighting veil celestial objects, it disturbs the measurement of many atmospheric phenomena. The sky brightness is one of the most relevant parameters for astronomical site selection. Our goal is to evaluate the sky brightness of two Argentinian observation sites: LEO ++ and El Leoncito. Both sites were preselected to host the Cherenkov Telescope Array. This project consists of an arrangement of many telescopes that can measure high-energy gamma ray emissions via their Cherenkov radiation produced when entering the earth’s atmosphere. In this paper, we describe the measurement methods used to determine whether those sites are valuable or not. We compared our results with the sky radiance of different renowned astronomical sites (Kitt Peak, Arizona, and Mont-Mégantic, Québec, Canada). Among our results, we found that LEO ++ is a good site, however the presence of a low layer of local aerosol can introduce uncertainties in the measurements. Consequently, El Leoncito would be a better option for such an installation. This latter site shows very low sky brightness levels, which are optimal for low light detection.
|