|
Seltmann, S., Trost, L., Ter Maat, A., & Gahr, M. (2016). Natural melatonin fluctuation and its minimally invasive simulation in the zebra finch. PeerJ, 4, e1939.
Abstract: Melatonin is a key hormone in the regulation of circadian rhythms of vertebrates, including songbirds. Understanding diurnal melatonin fluctuations and being able to reverse or simulate natural melatonin levels are critical to investigating the influence of melatonin on various behaviors such as singing in birds. Here we give a detailed overview of natural fluctuations in plasma melatonin concentration throughout the night in the zebra finch. As shown in previous studies, we confirm that âlights offâ initiates melatonin production at night in a natural situation. Notably, we find that melatonin levels return to daytime levels as early as two hours prior to the end of the dark-phase in some individuals and 30 min before âlights onâ in all animals, suggesting that the presence of light in the morning is not essential for cessation of melatonin production in zebra finches. Thus, the duration of melatonin production seems not to be specified by the length of night and might therefore be less likely to directly couple circadian and annual rhythms. Additionally, we show that natural melatonin levels can be successfully simulated through a combination of light-treatment (daytime levels during subjective night) and the application of melatonin containing skin-cream (nighttime levels during subjective day). Moreover, natural levels and their fluctuation in the transition from day to night can be imitated, enabling the decoupling of the effects of melatonin, for example on neuronal activity, from sleep and circadian rhythmicity. Taken together, our high-resolution profile of natural melatonin levels and manipulation techniques open up new possibilities to answer various melatonin related questions in songbirds.
|
|
|
Lucassen, E. Â. A., Coomans, C. Â. P., van Putten, M., de Kreij, S. Â. R., van Genugten, J. Â. H. L. T., Sutorius, R. Â. P. M., et al. (2016). Environmental 24-hr Cycles Are Essential for Health. Current Biology, 26(14), 1843–1853.
Abstract: Circadian rhythms are deeply rooted in the biology of virtually all organisms. The pervasive use of artificial lighting in modern society disrupts circadian rhythms and can be detrimental to our health. To investigate the relationship between disrupting circadian rhythmicity and disease, we exposed mice to continuous light (LL) for 24 weeks and measured several major health parameters. Long-term neuronal recordings revealed that 24 weeks of LL reduced rhythmicity in the central circadian pacemaker of the suprachiasmatic nucleus (SCN) by 70%. Strikingly, LL exposure also reduced skeletal muscle function (forelimb grip strength, wire hanging duration, and grid hanging duration), caused trabecular bone deterioration, and induced a transient pro-inflammatory state. After the mice were returned to a standard light-dark cycle, the SCN neurons rapidly recovered their normal high-amplitude rhythm, and the aforementioned health parameters returned to normal. These findings strongly suggest that a disrupted circadian rhythm reversibly induces detrimental effects on multiple biological processes.
|
|
|
Ohayon, M. M., & Milesi, C. (2016). Artificial Outdoor Nighttime Lights Associate with Altered Sleep Behavior in the American General Population. Sleep, 39(6), 1311–1320.
Abstract: STUDY OBJECTIVES: Our study aims to explore the associations between outdoor nighttime lights (ONL) and sleep patterns in the human population. METHODS: Cross-sectional telephone study of a representative sample of the general US population age 18 y or older. 19,136 noninstitutionalized individuals (participation rate: 83.2%) were interviewed by telephone. The Sleep-EVAL expert system administered questions on life and sleeping habits; health; sleep, mental and organic disorders (Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision; International Classification of Sleep Disorders, Second Edition; International Classification of Diseases, 10(th) Edition). Individuals were geolocated by longitude and latitude. Outdoor nighttime light measurements were obtained from the Defense Meteorological Satellite Program's Operational Linescan System (DMSP/OLS), with nighttime passes taking place between 19:30 and 22:30 local time. Light data were correlated precisely to the geolocation of each participant of the general population sample. RESULTS: Living in areas with greater ONL was associated with delayed bedtime (P < 0.0001) and wake up time (P < 0.0001), shorter sleep duration (P < 0.01), and increased daytime sleepiness (P < 0.0001). Living in areas with greater ONL also increased the dissatisfaction with sleep quantity and quality (P < 0.0001) and the likelihood of having a diagnostic profile congruent with a circadian rhythm disorder (P < 0.0001). CONCLUSIONS: Although they improve the overall safety of people and traffic, nighttime lights in our streets and cities are clearly linked with modifications in human sleep behaviors and also impinge on the daytime functioning of individuals living in areas with greater ONL.
|
|
|
Kintisch, E. (2016). Voyage into darkness (Vol. 351).
|
|
|
Luarte, T., Bonta, C. C., Silva-Rodriguez, E. A., Quijon, P. A., Miranda, C., Farias, A. A., et al. (2016). Light pollution reduces activity, food consumption and growth rates in a sandy beach invertebrate. Environ Pollut, 218, 1147–1153.
Abstract: The continued growth of human activity and infrastructure has translated into a widespread increase in light pollution. Natural daylight and moonlight cycles play a fundamental role for many organisms and ecological processes, so an increase in light pollution may have profound effects on communities and ecosystem services. Studies assessing ecological light pollution (ELP) effects on sandy beach organisms have lagged behind the study of other sources of disturbance. Hence, we assessed the influence of this stressor on locomotor activity, foraging behavior, absorption efficiency and growth rate of adults of the talitrid amphipod Orchestoidea tuberculata. In the field, an artificial light system was assembled to assess the local influence of artificial light conditions on the amphipod's locomotor activity and use of food patches in comparison to natural (ambient) conditions. Meanwhile in the laboratory, two experimental chambers were set to assess amphipod locomotor activity, consumption rates, absorption efficiency and growth under artificial light in comparison to natural light-dark cycles. Our results indicate that artificial light have significantly adverse effects on the activity patterns and foraging behavior of the amphipods, resulting on reduced consumption and growth rates. Given the steady increase in artificial light pollution here and elsewhere, sandy beach communities could be negatively affected, with unexpected consequences for the whole ecosystem.
|
|