|
Zamorano, J., Sánchez de Miguel, A., Ocaña, F., Pila-Diez, B., Gómez Castaño, J., Pascual, S., et al. (2016). Testing sky brightness models against radial dependency: a dense two dimensional survey around the city of Madrid, Spain. JQSRT, 181, 52–66.
Abstract: We present a study of the night sky brightness around the extended metropolitan area of Madrid using Sky Quality Meter (SQM) photometers. The map is the first to cover the spatial distribution of the sky brightness in the center of the Iberian peninsula. These surveys are neccessary to test the light pollution models that predict night sky brightness as a function of the location and brightness of the sources of light pollution and the scattering of light in the atmosphere. We describe the data-retrieval methodology, which includes an automated procedure to measure from a moving vehicle in order to speed up the data collection, providing a denser and wider survey than previous works with similar time frames. We compare the night sky brightness map to the nocturnal radiance measured from space by the DMSP satellite. We find that i) a single source model is not enough to explain the radial evolution of the night sky brightness, despite the predominance of Madrid in size and population, and ii) that the orography of the region should be taken into account when deriving geo-specific models from general first-principles models. We show the tight relationship between these two luminance measures. This finding sets up an alternative roadmap to extended studies over the globe that will not require the local deployment of photometers or trained personnel.
|
|
|
Last, K. Â. S., Hobbs, L., Berge, J., Brierley, A. Â. S., & Cottier, F. (2016). Moonlight Drives Ocean-Scale Mass Vertical Migration of Zooplankton during the Arctic Winter. Current Biology, 26(2), 244–251.
Abstract: In extreme high-latitude marine environments that are without solar illumination in winter, light-mediated patterns of biological migration have historically been considered non-existent [ 1 ]. However, diel vertical migration (DVM) of zooplankton has been shown to occur even during the darkest part of the polar night, when illumination levels are exceptionally low [ 2, 3 ]. This paradox is, as yet, unexplained. Here, we present evidence of an unexpected uniform behavior across the entire Arctic, in fjord, shelf, slope and open sea, where vertical migrations of zooplankton are driven by lunar illumination. A shift from solar-day (24-hr period) to lunar-day (24.8-hr period) vertical migration takes place in winter when the moon rises above the horizon. Further, mass sinking of zooplankton from the surface waters and accumulation at a depth of ∼50 m occurs every 29.5 days in winter, coincident with the periods of full moon. Moonlight may enable predation of zooplankton by carnivorous zooplankters, fish, and birds now known to feed during the polar night [ 4 ]. Although primary production is almost nil at this time, lunar vertical migration (LVM) may facilitate monthly pulses of carbon remineralization, as they occur continuously in illuminated mesopelagic systems [ 5 ], due to community respiration of carnivorous and detritivorous zooplankton. The extent of LVM during the winter suggests that the behavior is highly conserved and adaptive and therefore needs to be considered as âbaselineâ zooplankton activity in a changing Arctic ocean [ 6â9 ].
|
|
|
Ayaki, M., Hattori, A., Maruyama, Y., Nakano, M., Yoshimura, M., Kitazawa, M., et al. (2016). Protective effect of blue-light shield eyewear for adults against light pollution from self-luminous devices used at night. Chronobiol Int, 33(1), 134–139.
Abstract: We investigated sleep quality and melatonin in 12 adults who wore blue-light shield or control eyewear 2 hours before sleep while using a self-luminous portable device, and assessed visual quality for the two eyewear types. Overnight melatonin secretion was significantly higher after using the blue-light shield (P < 0.05) than with the control eyewear. Sleep efficacy and sleep latency were significantly superior for wearers of the blue-light shield (P < 0.05 for both), and this group reported greater sleepiness during portable device use compared to those using the control eyewear. Participants rated the blue-light shield as providing acceptable visual quality.
|
|
|
Okuliarova, M., Molcan, L., & Zeman, M. (2016). Decreased emotional reactivity of rats exposed to repeated phase shifts of light-dark cycle. Physiology & Behavior, 156, 16–23.
Abstract: Disturbed lightâdark (LD) cycles are associated with circadian disruption of physiological and behavioural rhythms and in turn with an increased risk of disease development. However, direct causal links and underlying mechanisms leading to negative health consequences still need to be revealed. In the present study, we exposed male Wistar rats to repeated phase shifts of LD cycle and analysed their ability to cope with mild emotional stressors. In experiment 1, rats were submitted to either a regular 12:12 LD cycle (CTRL rats) or 8-h phase delay shifts applied every 2 days for 5 weeks (SHIFT rats). Subsequently, the behaviour was examined in the open-field, blackâwhite box and elevated plus maze tests. In experiment 2, changes in blood pressure (BP), heart rate (HR) as well as the activity of autonomic nervous system were measured in telemeterised rats in response to open-field and blackâwhite box tests before and after 5-week exposure to shifted LD regime. Locomotor activity was consistently higher in SHIFT than CTRL rats in in the open-field and blackâwhite box tests. Interestingly, in the elevated plus maze, SHIFT rats displayed increased risk assessment and decreased grooming compared to CTRL rats. Anxiety measures were affected only in the blackâwhite box, where SHIFT rats displayed reduced anxiety-like behaviour compared to CTRL rats. Differences in behavioural reactivity between SHIFT and CTRL rats did not correspond with BP and HR changes. However, exposure to phase shifts increased the sympathovagal reactivity in the blackâwhite box. Together, our results demonstrated that disturbed LD conditions decreased emotional reactivity of rats and affected their ability to cope with emotional stressors denoting an additional risk mechanism linking disrupted circadian organisation to adverse health effects.
|
|
|
Honnen, A. - C., Johnston, P. R., & Monaghan, M. T. (2016). Sex-specific gene expression in the mosquito Culex pipiens f. molestus in response to artificial light at night. BMC Genomics, 17(1), 22.
Abstract: BACKGROUND: Artificial light at night (ALAN) is a typical feature of urban areas and most organisms living in urban or suburban habitats are exposed to low levels of ALAN. Light is one of the most important environmental cues that organisms use to regulate their activities. Studies have begun to quantify the influence of ALAN on the behavior and ecology of organisms, but research on the effects at the molecular level remains limited. Mosquitoes in the Culex pipiens complex (Diptera, Culicidae) are widespread and abundant in urban areas where they are potential disease vectors. It is thus of particular interest to understand how ALAN may influence biologically and ecologically relevant traits. RESULTS: We used RNAseq to evaluate the transcriptome response in a Cx. pipiens f. molestus laboratory population that was exposed to near-natural light conditions (light:dark L16:D8 hours, “control”) and ALAN conditions with 3 h of constant low-level light at night (L16 + Llow3:D5 hours, “low-light”). The resulting transcripts were mapped to the reference genome of the closely related Culex quinquefasciatus. Female expression patterns differed significantly between control and treatment conditions at five genes although none showed an absolute fold change greater than two (FC > 2). In contrast, male expression differed at 230 genes (74 with FC > 2). Of these, 216 genes (72 with FC > 2) showed reduced expression in the low-light treatment, most of which were related to gametogenesis, lipid metabolism, and immunity. Of the 14 genes (two with FC > 2) with increased expression, only five had any functional annotation. There was a pronounced sex-bias in gene expression regardless of treatment, with 11,660 genes (51 % of annotated genes; 8694 with FC > 2; 48 % of annotated genes) differentially expressed between males and females, including 14 genes of the circadian clock. CONCLUSION: Our data suggest a stronger response to artificial light by males of Cx. pipiens f. molestus than by females, and that a wide range of physiological pathways may be affected by ALAN at the molecular level. The fact that differences in gene expression appear to be sex-specific may have a strong influence at the population level.
|
|